Sobolev spaces and calculus of variations on fractals *arXiv:1805.04456*

Michael Hinz, Dorina Koch, Melissa Meinert

Bielefeld University, Dept. of Mathematics

mhinz@math.uni-bielefeld.de, dorina-koch@t-online.de, mmeinert@math.uni-bielefeld.de

Introduction

We pursue two aims.

- 1. Quick account on *p*-energies and (1, p)-Sobolev spaces for fractals that carry a local regular Dirichlet form.
- 2. Adapt a classical result [6, Theorem 4.3.1] about the existence of minimizers for convex functionals in the present setup.

Main Result

Theorem 2. ([6, Theorem 4.3.1]) Let $1 let <math>\Omega \subset X$ be an open set and assume that the *Poincaré inequality*

$$\|u\|_{L^p(\Omega,m)}^p \le c \,\mathcal{E}^{(p)}(u), \quad u \in H^{1,p}_0(\Omega,m),$$

holds, where c > 0 is constant depending only on Ω and p. Let $f = (f_x)_{x \in X}$ be a family of mappings $f_x : \mathcal{H}_x \to \mathbb{R}, x \in X$ s.t. (i) for every $v \in L^p(X, m, (\mathcal{H}_x)_{x \in X})$ the function $x \mapsto f_x(v_x)$ is Borel measurable, (ii) the function f_x is lower semicontinuous and convex for all $x \in X$, (iii) there are a function $a \in L^1(X, m)$ and constant b > 0 is satisfied s.t.

Materials and Methods

Dirichlet forms, *p***-energies and Sobolev spaces** $H_0^{1,p}(X,m)$

 $\bullet (X,d) :$ locally compact separable metric space,

m: nonneg. Radon measure on X s.t. *m*(*U*) > 0 for any nonempty open set *U* ⊂ *X*,
(*E*, *D*(*E*)): given regular Dirichlet form on *L*²(*X*, *m*).

Idea: Partially generalize former definitions in [5, Section 6], which covered the cases $2 \le p < +\infty$.

We make the following *standing assumptions*.

Assumption 1. The Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ on $L^2(X, m)$ is strongly local and admits a *carré du champ*, $m(X) < +\infty$, and \mathcal{A} is an algebra and a core for $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ s.t.

 $\Gamma(f,g) := \frac{d\Gamma(f,g)}{dm} \in L^{\infty}(X,m) \quad \forall f,g \in \mathcal{A}.$

Assumption 2. There is a space $\mathcal{A}_{\mathcal{L}} \subset \mathcal{D}(\mathcal{L})$, dense in $\mathcal{D}(\mathcal{E})$ and s.t. for any $f \in \mathcal{A}_{\mathcal{L}}$ we have $\Gamma(f) \in L^{\infty}(X, m)$ and $\mathcal{L}f \in L^{\infty}(X, m)$.

Remark 1. As a by-product one can provide an analog of the most classical definition of Sobolev spaces $W^{1,p}(\Omega)$.

• Define associated *p*-energies, $1 \le p < +\infty$, by $\mathcal{E}^{(p)}(f) := \int_X \Gamma(f)^{p/2} dm$, $f \in \mathcal{A}$.

 $f_x(v_x) \ge -a(x) + b \|v_x\|_{\mathcal{H}_x}^p$

for a.a. $x \in X$ and all $v \in L^p(X, m, (\mathcal{H}_x)_{x \in X})$. Then for any $g \in H_0^{1,p}(X, m)$ the functional $I[u] = \int_X f_x(\partial_x u)m(dx)$ admits its infimum on $g + H_0^{1,p}(\Omega, m)$.

Examples

Degenerate forms

Let $X = (-1, 1)^2 \subset \mathbb{R}^2$ and consider the quadratic form

$$\mathcal{E}(f) = \int_{-1}^{1} \int_{-1}^{1} \left(\frac{\partial f}{\partial x_{1}}\right)^{2} dx_{1} dx_{2} + \int_{-1}^{1} \int_{0}^{1} x_{2} \left(\frac{\partial f}{\partial x_{2}}\right)^{2} dx_{1} dx_{2}, \quad f \in C_{c}^{\infty}((-1,1)^{2}).$$

Since $\frac{\partial}{\partial x_i}(x_2 \vee 0) \in L^2((-1,1)^2)$, i = 1, 2, the form is closable in $L^2((-1,1)^2)$, [4, Section 3.1, (1°.a)], and its closure satisfies Assumptions 1 and 2 with m being the two-dimensional Lebesgue measure, $dm = dx_1 dx_2$ and $\mathcal{A}_{\mathcal{L}} = \mathcal{A} = C_c^{\infty}(\Omega)$.

Here: energy functional with 'varying tangent space dimensions'.

Sierpinski gasket

Let X be the class. Sierpinski gasket K and $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ its standard energy form, see for instance [7]. Consider it in $L^2(K, \nu)$, where $m = \nu$ is the Kusuoka measure, $\nu := \nu_{h_1} + \nu_{h_2}$, and $\{h_1, h_2\}$ is an energy orthonormal system of non-constant harmonic functions on K.

Theorem 1. The functional $(\mathcal{E}^{(p)}, \mathcal{A})$ is closable in $L^p(X, m)$, $2 \leq p < +\infty$. If Assumption 2 is satisfied, then it is also closable in $L^p(X, m)$, 1 .

• Suppose $f \in L^p(X, m)$ s.t. there exists a sequence $(f_n)_n \subset \mathcal{A}$, Cauchy in the seminorm $\mathcal{E}^{(p)}(\cdot)^{1/p}$ and convergent to f in $L^p(X, m)$ and define $\mathcal{E}^{(p)}(f) := \lim_n \mathcal{E}^{(p)}(f_n)$.

• Denote the vector space of all such $f \in L^p(X,m)$ by $H_0^{1,p}(X,m)$. $H_0^{1,p}(X,m)$ are Banach with norms

 $\|f\|_{H^{1,p}_0(X,m)} = \|f\|_{L^p(X,m)} + \mathcal{E}(f)^{1/p}, \quad f \in H^{1,p}_0(X,m).$

Similar to [3]

Definition 1. To the spaces $H_0^{1,p}(X,m)$, $1 \le p < +\infty$, we refer as Sobolev spaces. Given an open set $\Omega \subset X$ we define $H_0^{1,p}(\Omega,m)$ on Ω as the completion in $H_0^{1,p}(X,m)$ of all elements of \mathcal{A} supported in Ω , respectively.

 L^p -vector fields and reflexivity of Sobolev spaces

• Following [2], one can

- construct a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ s.t. for all $a, b, c, d \in C_c(X) \cap \mathcal{D}(\mathcal{E}))$ we have $a \otimes b, c \otimes d \in \mathcal{H}$ and

 $\langle a \otimes b, c \otimes d \rangle_{\mathcal{H}} = \int_X b d\Gamma(a, c) dm.$

- introduce a derivation ∂f := f ⊗ 1, f ∈ A, and extend it to a closed unbounded linear operator ∂ : L²(X, m) → H with domain D(E), and ||∂f||²_H = E(f), f ∈ D(E).
- refer to H as the space of generalized L²-vector fields.

Assumptions 1 and 2 are satisfied, this follows from results in [9].

Figure 1: Sierpinski gasket

Let 1 , if <math>1 let Assumption 2 be in force. Suppose that for*m* $-a.e. <math>x \in X$ the space \mathcal{H}_x is two-dimensional. Let $\eta^{(1)}, \eta^{(2)} \in \mathcal{H}$ be s.t. for any $x \in X$ with dim $\mathcal{H}_x = 2$, $\{\eta_x^{(1)}, \eta_x^{(2)}\}$ is an orthonormal basis in \mathcal{H}_x , see for instance [8, Lemma 8.12]. By Theorem 2 we can find a minimizer in $g + H_0^{1,p}(\Omega, m)$ for the functional I with integrand defined by

 $f_x(v) = \|v\|_{\mathcal{H}_x}^p + |\left\langle v, \eta_x^{(1)} \right\rangle_{\mathcal{H}_x}|^p, \quad v \in \mathcal{H}_x,$

if \mathcal{H}_x is two-dimensional and by $f_x \equiv 0$ otherwise. This anisotropic functional could not be expressed in terms of the carré operator $u \mapsto \Gamma(u)$ only.

References

- [1] F. Cipriani, B. Grillo, Nonlinear Markov semigroups, nonlinear Dirichlet forms and applications to minimal surfaces, J. reine angew. Math. 562 (2003), 201–235.
- [2] F. Cipriani, J.-L. Sauvageot, *Derivations as square roots of Dirichlet forms*, J. Funct. Anal. 201 (2003), 78-120.
- [3] A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Springer LNM **1718**, Springer, New York, 1999.
- [4] M. Fukushima, Y. Oshima and M. Takeda, *Dirichlet forms and symmetric Markov processes*, de-Gruyter, Berlin, New York, 1994.

In particular, there exists a measurable field $(\mathcal{H}_x)_{x \in X}$ of Hilbert spaces (see [8]) s.t. $\langle u, v \rangle_{\mathcal{H}} = \int_X^{\oplus} \langle u_x, v_x \rangle_{\mathcal{H}_x} m(dx) \quad \forall u, v \in \mathcal{H}.$ For $v = (v_x)_{x \in X}$ let

$$\|v\|_{L^p(X,m,(\mathcal{H}_x)_{x\in X})} := \left(\int_X \|v_x\|_{\mathcal{H}_x}^p m(dx)\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty,$$

and define the spaces $L^p(X, m, (\mathcal{H}_x)_{x \in X})$ as the collections of the respective equivalence classes of *m*-a.e. equal sections having finite norm.

Similar to [1]

Proposition 1. The spaces $L^p(X, m, (\mathcal{H}_x)_{x \in X})$, $1 , are uniformly convex and in particular, reflexive. For each <math>1 the spaces <math>L^p(X, m, (\mathcal{H}_x)_{x \in X})$ and $L^q(X, m, (\mathcal{H}_x)_{x \in X})$ with 1 = 1/p + 1/q are the dual of each other.

- [5] M. Hinz, M. Röckner, A. Teplyaev, Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces, Stoch. Proc. Appl. **123**(12) (2013), 4373–4406.
- [6] J. Jost and X. Li-Jost. *Calculus of Variations*. Cambridge, UK ; New York: Cambridge UP, 1998. Print. Cambridge Studies in Advanced Mathematics ; 64.
- [7] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge, 2001.
- [8] M. Takesaki, Theory of Operator Algebras I, Encycl. Math. Sci. 124, Springer, New York, 2002.
- [9] A. Teplyaev, *Harmonic coordinates on fractals with finitely ramified cell structure*, Canad. J. Math. 60 (2008), 457–480.

Acknowledgements

Financial support by the German Research Foundation (DFG) through the IRTG 2235 is gratefully acknowledged.