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Introduction

We pursue two aims.

1. Quick account on p-energies and (1, p)-Sobolev spaces for fractals that carry a local regular Dirich-
let form.

2. Adapt a classical result [6, Theorem 4.3.1] about the existence of minimizers for convex functionals
in the present setup.

Materials and Methods

Dirichlet forms, p-energies and Sobolev spaces H1,p
0 (X,m)

• (X, d): locally compact separable metric space,

•m: nonneg. Radon measure on X s.t. m(U) > 0 for any nonempty open set U ⊂ X ,

• (E ,D(E)): given regular Dirichlet form on L2(X,m).

Idea: Partially generalize former definitions in [5, Section 6], which covered the cases 2 ≤ p < +∞.

We make the following standing assumptions.

Assumption 1. The Dirichlet form (E ,D(E)) on L2(X,m) is strongly local and admits a carré du
champ, m(X) < +∞, and A is an algebra and a core for (E ,D(E)) s.t.

Γ(f, g) :=
dΓ(f, g)

dm
∈ L∞(X,m) ∀f, g ∈ A.

Assumption 2. There is a space AL ⊂ D(L), dense in D(E) and s.t. for any f ∈ AL we have
Γ(f ) ∈ L∞(X,m) and Lf ∈ L∞(X,m).

Remark 1. As a by-product one can provide an analog of the most classical definition of Sobolev
spaces W 1,p(Ω).

•Define associated p-energies, 1 ≤ p < +∞, by E (p)(f ) :=
∫
X Γ(f )p/2dm, f ∈ A.

Theorem 1. The functional (E (p),A) is closable in Lp(X,m), 2 ≤ p < +∞. If Assumption 2 is
satisfied, then it is also closable in Lp(X,m), 1 < p < 2.

• Suppose f ∈ Lp(X,m) s.t. there exists a sequence (fn)n ⊂ A, Cauchy in the seminorm E (p)(·)1/p

and convergent to f in Lp(X,m) and define E (p)(f ) := limn E (p)(fn).

•Denote the vector space of all such f ∈ Lp(X,m) by H1,p
0 (X,m). H1,p

0 (X,m) are Banach with
norms

‖f‖
H1,p

0 (X,m)
= ‖f‖Lp(X,m) + E(f )1/p, f ∈ H1,p

0 (X,m).

Similar to [3]

Definition 1. To the spaces H1,p
0 (X,m), 1 ≤ p < +∞, we refer as Sobolev spaces. Given an open set

Ω ⊂ X we define H1,p
0 (Ω,m) on Ω as the completion in H1,p

0 (X,m) of all elements of A supported
in Ω, respectively.

Lp-vector fields and reflexivity of Sobolev spaces

• Following [2], one can

– construct a Hilbert space (H, 〈·, ·〉H) s.t. for all a, b, c, d ∈ Cc(X)∩D(E)) we have a⊗b, c⊗d ∈ H
and

〈a⊗ b, c⊗ d〉H =

∫
X
bdΓ(a, c)dm.

– introduce a derivation ∂f := f ⊗ 1, f ∈ A, and extend it to a closed unbounded linear operator
∂ : L2(X,m)→ H with domain D(E), and ‖∂f‖2H = E(f ), f ∈ D(E).

– refer toH as the space of generalized L2-vector fields.

In particular, there exists a measurable field (Hx)x∈X of Hilbert spaces (see [8]) s.t.
〈u, v〉H =

∫⊕
X 〈ux, vx〉Hx

m(dx) ∀u, v ∈ H.
For v = (vx)x∈X let

‖v‖Lp(X,m,(Hx)x∈X) :=

(∫
X
‖vx‖pHx

m(dx)

)1
p

, 1 ≤ p <∞,

and define the spaces Lp(X,m, (Hx)x∈X) as the collections of the respective equivalence classes of
m-a.e. equal sections having finite norm.

Similar to [1]

Proposition 1. The spaces Lp(X,m, (Hx)x∈X), 1 < p < +∞, are uniformly convex and in particu-
lar, reflexive. For each 1 < p < +∞ the spaces Lp(X,m, (Hx)x∈X) and Lq(X,m, (Hx)x∈X) with
1 = 1/p + 1/q are the dual of each other.

Main Result
Theorem 2. ([6, Theorem 4.3.1]) Let 1 < p < +∞ let Ω ⊂ X be an open set and assume that the
Poincaré inequality

‖u‖p
Lp(Ω,m)

≤ c E (p)(u), u ∈ H1,p
0 (Ω,m),

holds, where c > 0 is constant depending only on Ω and p. Let f = (fx)x∈X be a family of mappings
fx : Hx→ R, x ∈ X s.t.

(i) for every v ∈ Lp(X,m, (Hx)x∈X) the function x 7→ fx(vx) is Borel measurable,

(ii) the function fx is lower semicontinuous and convex for all x ∈ X ,

(iii) there are a function a ∈ L1(X,m) and constant b > 0 is satisfied s.t.

fx(vx) ≥ −a(x) + b‖vx‖pHx

for a.a. x ∈ X and all v ∈ Lp(X,m, (Hx)x∈X).

Then for any g ∈ H
1,p
0 (X,m) the functional I [u] =

∫
X fx(∂xu)m(dx) admits its infimum on

g + H
1,p
0 (Ω,m).

Examples

Degenerate forms
Let X = (−1, 1)2 ⊂ R2 and consider the quadratic form

E(f ) =

∫ 1

−1

∫ 1

−1

(
∂f

∂x1

)2

dx1dx2 +

∫ 1

−1

∫ 1

0
x2

(
∂f

∂x2

)2

dx1dx2, f ∈ C∞c ((−1, 1)2).

Since ∂
∂xi

(x2∨0) ∈ L2((−1, 1)2), i = 1, 2, the form is closable in L2((−1, 1)2), [4, Section 3.1, (1◦.a)],
and its closure satisfies Assumptions 1 and 2 with m being the two-dimensional Lebesgue measure,
dm = dx1dx2 and AL = A = C∞c (Ω).

Here: energy functional with ’varying tangent space dimensions’.

Sierpinski gasket

Figure 1: Sierpinski gasket

Let X be the class. Sierpinski gasket K and (E ,D(E))
its standard energy form, see for instance [7]. Con-
sider it in L2(K, ν), where m = ν is the Kusuoka mea-
sure, ν := νh1 + νh2, and {h1, h2} is an energy or-
thonormal system of non-constant harmonic functions on
K.

Assumptions 1 and 2 are satisfied, this follows from results in
[9].

Anisotropic functionals
Let 1 < p < +∞, if 1 < p < 2 let Assumption 2 be in force. Suppose that form-a.e. x ∈ X the space
Hx is two-dimensional. Let η(1), η(2) ∈ H be s.t. for any x ∈ X with dimHx = 2,

{
η

(1)
x , η

(2)
x

}
is an

orthonormal basis in Hx, see for instance [8, Lemma 8.12]. By Theorem 2 we can find a minimizer
in g + H

1,p
0 (Ω,m) for the functional I with integrand defined by

fx(v) = ‖v‖pHx
+ |
〈
v, η

(1)
x

〉
Hx

|p, v ∈ Hx,

ifHx is two-dimensional and by fx ≡ 0 otherwise. This anisotropic functional could not be expressed
in terms of the carré operator u 7→ Γ(u) only.
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