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Motivation

K. Pietruska-Pa luba in [1] constructed the reflected Brownian motion
on the Sierpiński gasket. A crucial element of the construction was
the labelling of the fractal vertices which allowed to define folding
projections on a complex of a given size.
The construction of the reflected Brownian motion is a key step in
proving the existence of the Integrated density of states (IDS) for the
subordinate Brownian motions perturbed by random potentials.
In [2] the reflected Brownian motion was constructed on simple nested
fractals satisfying the Good labelling property (GLP).

Notation

Let Ψi : R2→ R2, 1 ≤ i ≤ N be similitudes given by formula

Ψi(x) = (1/L)U(x) + νi,

where U is an isometry of R2, L > 1 is a scaling factor, νi ∈ R2 (for
future calculations we shall assume that ν1 = 0).

There exists the unique nonempty compact set K〈0〉 such that

K〈0〉 =

N⋃
i=1

Ψi

(
K〈0〉

)
.

The set K〈0〉 is the (bounded) fractal.

We shall denote K〈M〉 = LMK〈0〉.
Every set ∆M ⊂ K〈∞〉 of the form

∆M = K〈M〉 + ν∆M
,

where ν∆M
=
∑J
j=M+1L

jνij, for some J ≥M + 1,

νij ∈ {ν1, ..., νN}, is called an M -complex.

Figure: The Sierpiński Pentagon: 5 similitudes, L = 3+
√
5

2

Essential fixed points

The fixed point x ∈ K〈0〉 is an essential fixed point if there exists
another fixed point y ∈ K〈0〉 and similitudes Ψi, Ψj such that
Ψi(x) = Ψj(y).

V
〈0〉

0 is the set of the essential fixed points, #V
〈0〉

0 = k.

We also denote V
〈M〉
M = LMV

〈0〉
0 .

Figure: The Lindstrøm snowflake: 7 similitudes, L = 3 (7 fixed points, but only 6
essential fixed points).

Unbounded simple nested fractals (USNF)

The set K〈∞〉 =
⋃∞
M=0L

MK〈0〉 is called an unbounded simple
nested fractal (USNF) if the following conditions regarding the

family of similitudes Ψi generating the compact fractal K〈0〉 and the

set of vertices V
〈0〉

0 meet.

1. #V
〈0〉

0 ≥ 2.

2. There exists an open set U ∈ R2 such that for i 6= j
Ψi(U) ∩ Ψj(U) = ∅ and

⋃
iΨi(U) ⊆ U .

3. (Nesting) Let T, S be different 1-complexes. Then
T ∩ S = V (T ) ∩ V (S).

4. (Symmetry) For x, y ∈ V 〈0〉0 let Rx,y denote the symmetry with
respect to hyperplane bisecting the segment [x, y]. Then

∀i ∈ {1, ..., N} ∀x, y ∈ V 〈0〉0 ∃j ∈ {1, ..., N}
Rx,y

(
Ψi

(
V
〈0〉

0

))
= Ψj

(
V
〈0〉

0

)
5. (Connectivity) On the set V

〈0〉
−1 =

⋃
iΨi(V

〈0〉
0 ) we define graph

structure E−1 as follows:
(x, y) ∈ E−1 if x and y are in the same −1-complex.

Then the graph (V
〈0〉
−1 , E−1) is connected.

Shape of the complexes.

Proposition. If k = 2, then the fractal is just a segment connecting
two essential fixed points.

If k ≥ 3, then the points from V
〈0〉

0 are vertices of a regular polygon.

Definition of the good labelling property (GLP)

Since vertices of every M -complex ∆M are the vertices of a regular
k-gon, there exist exactly k different rotations around the barycenter

of K〈M〉, mapping V
〈M〉
M onto V

〈M〉
M . They will be denoted by

RM := {R1, ..., Rk} (ordered in such a way that for i = 1, 2, ..., k,
the rotation Ri rotates by angle 2πi

k ).
Let us consider the set of k letters A := {a1, a2, a3, ..., ak}, called
labels.
Definition. Let M ∈ Z. A function lM : V

〈∞〉
M → A is called a

good labelling function of order M if the following conditions meet.

(1) The restriction of lM to V
〈M〉
M is a bijection onto A.

(2) For every M -complex ∆M represented as

∆M = K〈M〉 + ν∆M
,

there exists a rotation R∆M
∈ RM such that

lM (v) = lM
(
R∆M

(
v − ν∆M

))
, v ∈ V (∆M ) .

An USNF K〈∞〉 is said to have the good labelling property of order
M if a good labelling function of order M exists. Note that, in fact,
for every M -complex ∆M the restriction of a good labelling function
to V (∆M ) is a bijection onto A.

Remark. Thanks to the self-similar structure of the set K〈∞〉 it has
a good labelling property of order M for some M ∈ Z if and only if
it has this property for every M ∈ Z. We can simply say that K〈∞〉
has a good labelling property (GLP).

Figure: Labelling of vertices of the Sierpiński gasket.

Definition of the projection

We define a projection map πM from the unbounded fractal K〈∞〉
onto the primary M -complex K〈M〉 by setting

πM (x) = R∆M

(
x− ν∆M

)
where ∆M = K〈∞〉 + ν∆M

is the M -complex containing x.

Reflected process

The reflected Brownian motion on K〈M〉 is defined as follows:

XM
t = πM (Zt) ,

where Zt is a diffusion on unbounded fractal K〈∞〉.

Impossibility of labelling the Lindstrøm snowflake

Can we consistently label vertices of any nested fractal?
No, there exist fractals which cannot be labelled, e.g. the Lindstrøm
snowflake.
Having labelled vertices of the bottom left complex clockwise as a, b,
c, d, e, f we know that the bottom right complex must have its left
vertex labelled as c. Labelling other vertices of this complex clockwise
determines that the label of the top left vertex is d. On the other
hand, the middle complex has the bottom left vertex labelled as b,
therefore its bottom right vertex should be labelled as a. The vertex
cannot have two labels, therefore this fractal cannot be well labelled.

Figure: Illegal labelling of vertices of the Lindstrøm snowflake.

Figure: The endpoints of the reflected trajectories on snowflake depend on whole past
of the process - the constructed process on snowflake would not have the Markov
property.

Easy-to-check condition for GLP

The fractal K〈∞〉 has the good labelling property if and only if there

exists a function ˜̀0 : V
〈1〉

0 → A such that the restriction of ˜̀0 to V
〈0〉

0
is a bijection into A and the condition (2) is satisfied for every

0-complex ∆0 ⊂ K〈1〉.

GLP Theorem 1.

If k = #V
〈0〉

0 is prime, then K〈∞〉 has the good labelling property.

Figure: An example of a fractal with five essential fixed points (description of one
iteration).

GLP Theorem 2.

If k = #V
〈0〉

0 = N ≥ 3, then K〈∞〉 has the good labelling property.

Figure: An example of a fractal with six essential fixed points and six fixed points -
complexes create ring structures (after three iterations).

GLP Theorem 3.

If 2|k = #V
〈0〉

0 , k > 2, then K〈∞〉 has the GLP if and only if the

0-complexes inside the 1-complex K〈1〉 can be divided into two classes
such that each complex from one class intersects only with the
complexes from the other class.
Remark: If k = 4, then the condition above is always satisfied and
K〈∞〉 has the GLP.

Figure: An example of a fractal with six essential fixed points, N = 42 (description of
one iteration). The complexes are divided into two classes.

Figure: An example of a fractal with four essential fixed points (description of one
iteration).

Summary

The fractals not considered in any of the theorems above are the
fractals for which k is odd, composite and N > k. Below there is an
example of such fractal that cannot be well-labelled.

Figure: An example of a fractal with nine essential fixed points, N = 54, without the
GLP (description of one iteration).
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