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Introduction
Our main goal is to determine the walk dimension dimW of gen-
eralized Vicsek sets with scaling ratios r = (2n + 1)−1, n ∈ N
without using diffusion. As an example the classical Vicsek set
with scaling ratio r = 1/3 is shown in Figure 1.
For any n ∈ N the construction of the Vicsek sets follows the
same pattern. Starting with the unit square we scale it by the
factor r = (2n+ 1)−1 and arrange m = 4n+ 1 copies of it on the
diagonals of the unit square. We then scale the whole set again
by r and arrange m copies on the diagonals of the unit square as
depicted in Figure 2.

Boundaries of augmented trees
Consider a sequence of graphs instead of sets when constructing
self similar fractals. In the case of the Vicsek sets we start with
the complete graph with four nodes K4. We then take m rescaled
copies of K4 and connect them as shown in Figure 3. Continuing
this leaves us with a sequence of graphs (Vk)k≥0 which converges
to the Vicsek set. By connecting them in an ascending order
with vertical edges (red) and adding horizontal edges (blue) as in
Figure 4 we get an augmented tree X = (V,E). In [LW09] Lau
and Wang showed that this augmented tree is hyperbolic if the
IFS satisfies the OSC. Since this is the case for the Vicsek sets,
our augmented tree is hyperbolic. Also the self similar set K of
the IFS is Hölder equivalent to the hyperbolic boundary ∂HX of
X .
We now define a so called λ-return ratio random walk which is
introduced in [KLW17]. This random walk has the property

ax,x−∑
y:y−=x ax,y

=
px,x−∑

y:y−=x px,y
= λ, (1)

where x− is the parent node of x in X . By choosing the same
value for all conductances on vertical edges

ax,y = ak,k+1, x ∈ Vk, y ∈ Vk+1, k ≥ 0,

equation (1) simplifies to

λ =
ak−1,k

(4n + 1)ak,k+1
,

and by recursion this yields

ak,k+1 =
1

((4n + 1)λ)k

if a0,1 = 1. The conductances on the horizontal edges are given
by

ax,y =


C1

((4n+1)λ)k
type I (black),

C2

((4n+1)λ)k
type II (blue).

By [KLW17] this random walk is transient and we can define the
Martin boundaryM of X . Additionaly the the Martin boundary
M, the hyperbolic boundary ∂HX and the self similar set K are
homeomorphic.

Energy on Graphs
For a graph (F,E,A) we define the energy on the graph by

EF (u, u) =
1

2

∑
x,y∈X

ax,y(u(x)− u(y))2.

It is easy to see that

EF (u, u) = −uTAu

where A is the conductance matrix of F , with

ax,y ≥ 0, x 6= y; ax,y = ay,x; ax,x = −
∑
y 6=x

ax,y

and u = (u(x1), . . . , u(xl))
T , x1, . . . , xl ∈ F .

We then can determine the trace energy on a subset of F . Let
G ⊂ F and H = F \ G. By rearranging A we can write it as
follows

A =

(
AGG AGH
AHG AHH

)
.

In [Bar98] Barlow showed that the trace energy on G is then
defined by the Schur complement

B = AGG − AGHA−1
HHAHG. (2)

Let P be the transition matrix of F where all nodes in G are
replaced by absorbing states. P then has the form

P =

(
I|G| 0

Q R

)
.

For a connected graph F any of the absorbing states will be
reached eventually by the Markov chain X corresponding to P .
Hence the following limit exists:

P̃ := lim
n→∞

Pn = lim
n→∞

(
I|G| 0∑n
i=0R

iQ 0

)

=

(
I|G| 0

(I|H| −R)−1Q 0

)
.

Figure 1: Vicsek set with scaling factor 1
3.
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Figure 2: The first two steps of the construction of the Vicsek set.
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Figure 3: The first two steps of the construction of the Vicsek set with graphs.
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Figure 4: The first three layers of the augmented tree for the Vicsek set.

j

ip1 = P(Xτ = j|X0 = v1)

p1 = P(Xτ = j|X0 = v2)p2 = P(Xτ = j|X0 = w)

Figure 5: Probabilities on a pregraph of the Vicsek set.
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Let τ be the first hitting time of any node in G then the entries
of P̃ are given by

p̃x,y = P(Xτ = y|X0 = x), x ∈ G, y ∈ F.

Since we also have with y1, . . . , yj ∈ H

Q = diag(deg(y1)−1, . . . , deg(yj)
−1) · AHG

(R− IV2) = diag(deg(y1)−1, . . . , deg(yj)
−1) · AHH

it follows

B
(2)
= AGG − AGH(R− I|H|)

−1Q.

The entries of B can then be calculated and are given by

bx,y =

{∑
z∼x P(Xτ = y|X0 = z) x 6= y,

− deg(x) +
∑
z∼x P(Xτ = x|X0 = z) x = y,

(see Figure 5) where x, y ∈ G, and

EG(u, u) = Tr(EF |G)(u, u) = −uTBu.

Induced Dirichlet Forms
Following [GY17] we construct a regular Dirichlet form on K.
We start by defining a regular Dirichlet form on L2(X ;m) where

m(x) =
(

c
(4n+1)λ

)|x|
, c ∈ (0, λ) with |x| = d(o, x).{

EX(u, u) = 1
2

∑
x,y∈X ax,y(u(x)− u(y))2,

FX = the (EX)1-closure of C0(X).

We then are able to construct an active reflected Dirichlet space

Frefa which yieldsE
ref (u, u) = 1

2

∑
x,y∈X ax,y(u(x)− u(y))2,

Frefa =
{
u ∈ L2(X ;m) : Eref (u, u) <∞

}
.

It can be shown that (Eref ,Frefa ) is a Dirichlet form on L2(X ;m)
which is not necessarily regular. We therefore construct a regu-
lar representation (EX ,FX) of this Dirichlet form on L2(X ;m),

where X is the Martin compactification of X ,{
EX(u, u) = 1

2

∑
x,y∈X ax,y(u(x)− u(y))2,

FX =
{
u ∈ C(X) : EX(u, u) <∞

}
.

This Dirichlet form is regular for λ ∈ (rm−1,m−1). We now are
able to take the trace form to K to get a Dirichlet form (EK,FK)
on L2(K; ν) where ν is the hitting distribution of ∂HX . This
Dirichlet form is then given byEK(u, u) =

∫
K

∫
K

(u(x)−u(y))2

|x−y|α+β ν(dx)ν(dy),

FK =
{
u ∈ L2(K; ν) : EK(u, u) <∞

}
,

and regular for β ∈ (α, β∗), α = dimH(K). We finally show
that for λ ∈ (0, λ∗), or β ∈ (β∗,∞), FK consists of constant
functions. This yields

dimW (K) = β∗ =
log((λ∗)−1)

log(r−1)
. (3)

Walk dimension of Vicsek sets
Let Ak be the conductance matrix of a square in Vk and Ak+1
the conductance matrix of the part of Vk+1 descending from the
square. Then the energy Ek of this square in Vk gets contributions
from the vertical edges connecting it to Vk+1

Ev =
5

2C1
r2Ek.

and from the 4n + 1 squares in the Vk+1 who descend from it

Ek+1 =
r

(4n + 1)λ
Ek

since

Ak+1|Vk =
C1

((4n + 1)λ)k+1
·


−3r r r r
r −3r r r
r r −3r r
r r r −3r


=

r

(4n + 1)λ
Ak.

Hence the triviality of FK follows for λ ∈ (0, rm−1) or β ∈
(β∗,∞), where

β∗ =
log((4n + 1)−1r)

log(r)
.

Equation (3) yields

dimW (K) =
log(m−1r)

log(r)
= 1 +

log(m)

− log(r)
= 1 + dimH(K).

Looking at the limit of the walk dimensions as n tends to infinity
yields

lim
n→∞

dimW (Kn) = lim
n→∞

1 +
log(4n + 1)

log(2n + 1)
= 2.


