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Objective
Multiresolution analysis arising from Coalescence Hidden-variable Frac-
tal Interpolation Functions (CHFIFs) is developed. This is done via the
following steps:

•Construction of a CHFIF
•Vector space of CHFIFs and determining dimension of the vector space
•Constructing Riesz bases for vector subspaces Vk, k ∈ Z of above
vector space

•Developing Multiresolution analysis in terms of nested sequences of
vector subspaces Vk, k ∈ Z.

Introduction

The theory of multiresolution analysis provides a powerful method to con-
struct wavelets having far reaching applications in analyzing signals and
images. In [Hardin D.P. et al., 1992], multiresolution analysis of L2(R)
were generated from certain classes of Affine Fractal Interpolation Func-
tions (AFIFs). A few years later, Donovan et al [Donovan G.C. et al., 1996]
constructed orthogonal compactly supported continuous wavelets using mul-
tiresolution analysis arising from AFIFs. The interrelations among AFIFs,
Multiresolution Analysis and Wavelets are treated in [Massopust P., 2010].
It is desirable [Christopher Torrence and Gilbert P. Compo, 1998] that the
wavelet function should reflect the features present in the original func-
tion but AFIF based wavelets generally cannot exhibit satisfactorily the
features of functions simulating natural objects or outcome of scientific ex-
periments that are partly self-affine and partly non-self-affine. The Coa-
lescence Hidden Variable Fractal Interpolation Functions (CHFIFs) intro-
duced in [Chand A.K.B. and Kapoor G.P., 2007] are ideally suited for such
purposes. However, multiresolution analysis of L2(R) based on CHFIFs has
hitherto remained unexplored. In the present work, such a multiresolution
analysis using CHFIFs as basis functions is developed.

Construction of a CHFIF

•Given data{(xn, yn) ∈ R2 : n = 0, 1, . . . , N}
•Generalized data {(xn, yn, zn) ∈ R3 : n = 0, 1, . . . , N}
• [x0, xN ] = I, [xn−1, xn] = In, n = 1, 2, . . . , N
•Ln - contraction maps from I to In = [xn−1, xn]
•αn, γn - Free Parameters, βn - Constrained Parameters, pn, qn -
continuous functions

A CHFIF is constructed such that
1 CHFIF:
f1(x) = αnf1(L−1

n (x)) +βnf2(L−1
n (x)) +pn(L−1

n (x)), x ∈ In, n = 1, . . . , N
passing through {(xn, yn) : n = 0, 1, . . . , N}

2 f2(x) = γnf2(L−1
n (x)) + qn(L−1

n (x)), x ∈ In, n = 1, . . . , N passes through
{(xn, zn) : n = 0, 1, . . . , N}

Definition of Multiresolution Analysis

A Multiresolution Analysis consists of closed linear subspaces Vk of
L2(R) that satisfy:

• . . . ⊇ V−1 ⊇ V0 ⊇ V1 ⊇ . . .

• ⋂
k∈Z

Vk = {0}
•closL2

⋃
k∈Z

Vk = L2(R)
•f ∈ V0⇔ f (2−k · −l) ∈ Vk, k, l ∈ Z.
•There exists a function φ ∈ L2(R) such that φk,l, l ∈ Z, defined by
φk,l(x) = 2−k/2φ(2−kx− l), form a Riesz basis of Vk for each k ∈ Z.
A set B = {φ1, φ2, . . . , φM}, M ∈ N,M > 1, of scaling functions is said
to generate a multiresolution analysis of L2(R) if φ and φk,l in the above
definition of MRA are replaced by φi and φi,k,l, i = 1, 2, . . . ,M respectively.

Vector space of CHFIFs and its dimension

Let the set S0 consisting of functions f : I → R2 be defined as
S0 = {f : f = (f1, f2), f1 is a CHFIF passing through {(xi, yi) ∈ R2 :
i = 0, 1, . . . , N} and f2 is an AFIF passing through {(xi, zi) ∈ R2 : i =
0, 1, . . . , N}}. Then, S0 is a vector space, with usual point-wise addition
and scalar multiplication. The dimension of S0 is 2(N + 1).

Definition

Let S1
0 be the set of functions f1 : I → R that are first components of

functions f ∈ S0. The space of CHFIFs is the set S1
0 together with the

maximum metric d∗(f, g) = max
x∈I
|f (x)− g(x)|. The dimension of S0 is 2N .

Notations

y0 = (1, r1, . . . , rN−1, 0), yN = (0, s1, . . . , sN−1, 1),
yi = (0, . . . , 1, . . . , 0), i = 1, . . . , N − 1,
yN+1+i = (0, ui,1, . . . , ui,N−1, 0), i = 0, . . . , N ;


zi = (0, . . . , 0), zN+1+i = (0, . . . , 1, . . . , 0), i = 0, . . . , N

•fi = (fi,1, fi,2) i = 0, . . . , 2N + 1
•fi,1 passes through the points {(xk, (yi)k), k = 0, . . . , N}
•fi,2 passes through the points {(xk, (zi)k), k = 0, . . . , N}

Definitions

Ṽ0 = {f : f = (f1, f2), f1|[m−1,m)is a CHFIF , f2|[m−1,m)is a FIF,m ∈ Z,
f1, f2 ∈ L2(R) ⋂C0(R)} and Ṽk = {f : f (N−k·) ∈ Ṽ0}.
Example
f = (f1, f2) with x0 = 0, xN = 1, f (x0) = (0, 0) = f (xN) and set
f (x) = (0, 0) for x 6∈ I .

Definition

V0 = {f1 : f1 is the first component of some f = (f1, f2) ∈ Ṽ0} and Vk =
{f1 : f1(N−k·) ∈ V0}.

Constructions

•< fi,1, f0,1 >= 0 and < fi,1, fN,1 >= 0
•< fN+1+j,1, fi,1 >= 0, < fN+1+i,1, f0,1 >= 0 and < fN+1+i,1, fN,1 >= 0
•Gram-Schmidt Process : {φi,1}2N−1

i=1 ⊂ V0, i 6= N

•Set

φN,1 =



fN,1(x) x ∈ [0, 1)
f0,1(x− 1) x ∈ [1, 2)
0 otherwise

Main Results [Kapoor G.P. and Prasad S.A., 2014]
•V0 = closL2(R) span{φi,1(· − l) : i = 1, . . . , 2N − 1, l ∈ Z}
•{φi,1}2N−1

i=1 generates a continuous, compactly supported multiresolution analysis of L2(R)

Outline of Proof of Result 1

•g1 ∈ V0 for some g = (g1, g2) ∈ Ṽ0

•g has unique expansion in terms of the functions fi = (fi,1, fi,2), i = 0, . . . 2N + 1, and their integer translates
•g1 has a unique expansion in terms of the functions φi,1, i = 1, . . . , 2N − 1, and their integer translates
•Ṽ0 and V0 is closed.

Outline of Proof of Result 2

(i). . . ⊇ V−1 ⊇ V0 ⊇ V1 ⊇ . . .

•g1 ∈ V1 for some g = (g1, g2) ∈ Ṽ1

•G = N⋃
i=1
wi(G)

•wj(G) = N⋃
i=1
wj ◦ wi ◦ w−1

j (wj(G))
•wj(G) is graph of g|[j−1,j)
•g ∈ Ṽ0, g1 ∈ V0

(ii) ⋂
k∈Z

Vk = {0}

•gχJ0
(x) =


g(x) x ∈ J0 = [0, 1]
0 x 6∈ J0

, g ∈ V0

•‖gχJn‖∞ ≤ c‖gχJn‖L2(R), Jn = [n, n + 1], n = 0, 1, . . .
•‖g‖∞ ≤ sup

n
‖gχJn‖∞ ≤ c ∑

n∈Z
‖gχJn‖L2(R) = c‖g‖L2(R)

•‖g‖∞ ≤ cNk/2‖g‖L2(R) for all g ∈ Vk

• ⋂
k∈Z

Vk = {0}

(iii) closL2(R)
⋃

k∈Z
Vk = L2(R)

1 = ∑
k

 N−1∑
i=1

Ck,i fi,1(x− k) + φN(x− k) +
N−1∑
i=1

Dk,i fN+1+i,1(x− k)


Ck,i =
1− ri− si− N−1∑

j=1
uj,izj

 and Dk,i = zi, i = 1, . . . , N − 1.

(iv) φi,1, i = 1, . . . , 2N − 1 form a Riesz basis of V0.

•
1

‖φN,1‖2


(∫
I |f0,1(x)|2dx

)1/2 (∫I |f0,1(x)||fN,1(x)|dx)1/2

(∫I |f0,1(x)||fN,1(x)|dx)1/2 (∫
I |fN,1(x)|2dx

)1/2

 .

•A =
√
τ ‖φN,1‖L2(R) and B = 3‖φN,1‖L2(R)

•A‖c‖l2 ≤ ‖ ∑ ciφN,1 (· − i)‖L2(R) ≤ B‖c‖l2
•φi,1, i = 1, . . . , 2N − 1, i 6= N , and their integer translates are mutually
orthogonal

Remarks

It follows that the set {φ̂i,1 : i = 1, 2, . . . , 2N − 1} ⊂ V0, where
φ̂i,1(x) = φi,1(x)/‖φi,1‖L2, i = 1, 2, . . . , 2N−1, actually generates a contin-
uous, compactly supported multiresolution analysis of L2(R) by orthonormal
functions.

Conclusion

In this paper, multiresolution analysis arising from Coalescence Hidden-
variable Fractal Interpolation Functions is developed, since CHFIF based
wavelets would generally more satisfactorily preserve the features of the func-
tions simulating natural objects or outcome of scientific experiments that are
partly self-affine and partly non-self-affine than AFIF based wavelets. The
availability of a larger set of free variables and constrained variables with
CHFIF in multiresolution analysis based on CHFIFs provides more control
in reconstruction of functions in L2(R) than that provided by multiresolution
analysis based only on affine FIFs.

Additional Information

•Orthogonal bases consisting of dilations and translations of scaling
functions, for the vector subspaces Vk, k ∈ Z, consisting of certain
CHFIFs in L2(R) ⋂Cb(R), have been constructed.

•As a natural follow-up, the orthogonality of these scaling functions have
been used to construct compactly supported continuous orthonormal
wavelets.
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