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1. Introduction and motivations

Fractional Brownian motion (fBm) of an arbitrary Hurst
parameter H ∈ (0, 1), denoted by {BH(t) : t ∈ R}, is
defined, up to a multiplicative constant, as the unique (in
distribution) Gaussian process with stationary increments
which is globally self-similar of order H.
The representation of fBm as a well-balanced moving av-
erage is given, for every t ∈ R, by the Wiener integral over
R:

BH(t) =

∫
R

[
|t− s|H−1/2 − |s|H−1/2

]
dB(s), (1.1)

with the convention that |t − s|0 − |s|0 = log |t − s| − log |s|.
FBm was first introduced by Kolmogorov in 1940 as a way
for generating Gaussian spirals in Hilbert spaces. Later, in
1968, the well-known article by Mandelbrot and Van Ness
emphasised its importance as a model in several areas of
application: hydrology, geology, finance, and so on. Since
then many applied and theoretical aspects of this stochas-
tic process have been extensively explored in the literature
and, among many other things, its sample behavior has
been well understood. Despite its importance in modeling,
fBm does not always succeed in giving a sufficiently reliable
description of real-life signals. Indeed, fBm suffers from two
main limitations:

(a) its Gaussian character,

(b) local roughness of its sample paths remains everywhere
the same; more precisely, their local and pointwise
Hölder exponents are everywhere equal to the Hurst pa-
rameter H.

In this work, we construct a natural extension of FBM de-
noted by Z, which belongs to a homogeneous Wiener
chaos of an arbitrary order d ∈ Z+ and whose local reg-
ularity changes from one point to another. Then, using a
wavelet approach, we study its global and local behavior.
Namely, the chaotic multifractional process Z of functional
paramater H(·) is defined, for all t ∈ R, through the multiple
Wiener integral on Rd:

Z(t) =

∫
Rd

[
‖t∗− x‖H(t)−d

2
2 − ‖x‖H(t)−d

2
2

]
dBx1...dBxd , (1.2)

where t∗ = (t, ..., t) ∈ Rd, ‖ · ‖2 denotes the Euclidian norm
over Rd, and H(·) is an arbitrary deterministic continuous
function over R with values in the open interval (0, 1).

2. Wavelet representation of the chaotic process

Let E = {0, 1}d\{(0, ..., 0)}. A Meyer wavelet basis of L2(Rd)
is an Hilbertian basis of L2(Rd) of the form:{

2
jd
2 ψ(ε)(2jx− k) : j ∈ Z,k ∈ Zd, ε ∈ E

}
; (2.1)

for the sake of convenience, one sets:

ψ
(ε)
j,k(x) = 2

jd
2 ψ(ε)(2jx− k). (2.2)

The 2d − 1 real-valued functions ψ(ε), ε ∈ E, which gen-
erate the basis are called the d-variate Meyer mother
wavelets. They can be expressed as tensor products of
ψ0 and ψ1 which respectively denote a 1-variate Meyer fa-
ther and mother wavelet. Using the nice properties of the
d-variate Meyer mother wavelets, for each ε ∈ E, it can
be shown that the real-valued function Ψε defined, for all
(u, v) ∈ Rd × [0, 1], as

Ψε(u, v) =

∫
Rd
‖u− s‖v−d/2

2 ψ(ε)(s)ds ,

is infinitely differentiable on Rd× (0, 1) and satisfies, as well
as all its partial derivatives of any order, the following very
useful localization property for all (n,p, q) ∈ Z+×Zd+×Z+:

sup

{
‖u‖n2

∣∣(∂pu∂qvΨε)(u, v)
∣∣ : (u, v) ∈ Rd × (0, 1)

}
< +∞ .

(2.3)

Recall that a centred non-Gaussian square integrable real-
valued random variable, on the underlying probability space
(Ω,F ,P), belongs to the homogeneous Wiener chaos of
an arbitrary integer order d ≥ 2 when it can be represented
by a multiple Wiener integral over Rd. We always denote
by Id(·) this stochastic integral, and use the classical con-
vention that, for every f ∈ L2(Rd), one has Id(f ) = Id(f̃ );
the function f̃ being the symmetrization of f , defined, for all
(t1, ..., td) ∈ Rd, as

f̃ (t1, ..., td) =
1

d!

∑
σ∈Sd

f (tσ(1), ..., f (tσ(d))),

where Sd refers to the set of all permutations of {1, ..., d}. A
very important property of multiple Wiener integrals, which
somehow can be viewed as an isometry property, is that,
for all function f ∈ L2(Rd), one has

E
(
|Id(f )|2

)
= d! ‖f̃‖2L2(Rd) ≤ d! ‖f‖2L2(Rd) . (2.4)

By expanding, for each fixed t ∈ R, the kernel function

x 7→ ‖t∗−x‖H(t)−d
2

2 −‖x‖H(t)−d
2

2 in (1.2) into a Meyer wavelet
basis of L2(Rd) (see e.g [4]), and by using the isometry
property of the multiple Wiener integral, we construct a ran-
dom series representation for the chaotic fractional process
{Z(t) : t ∈ R} which converges in L2(Ω) where Ω denotes
the underlying probability space. The following proposition
provides the random wevelts series and improves its type
of convergence.

Proposition 2.1 For each fixed t ∈ R, one has

Z(t) =
∑
j,k,ε

2−jH(t)(Ψε(2jt∗−k, H(t))−Ψε(−k, H(t)))Id(ψ
(ε)
j,k)(ω),

where the random series in the right-hand side is, on an
event Ω∗ of probability 1 , uniformly convergent in t, on each
compact subset of R.

The proof of Proposition 2.1 is mainly based on the local-
ization property (2.3) and on the following important lemma
borrowed from [1].

Lemma 2.2 For each (j,k, ε) ∈ Z × Zd × E, let Id(ψ
(ε)
j,k) be

the multiple Wiener integral over Rd of the wavelet function
defined in (2.2). That is one has

Id(ψ
(ε)
j,k) =

∫
Rd
ψ

(ε)
j,k(x)dBx1...dBxd. (2.5)

Then, there exists an event Ω∗ of probability 1 and a finite
positive random variable Cd such that, for all ω ∈ Ω∗ and for
each (j,k, ε) ∈ Z× Zd × E, one has

|Id(ψ
(ε)
j,k)(ω)| ≤ Cd(ω)

(
log(e + |j| + ‖k‖1)

)d
2, (2.6)

where ‖ · ‖1 denotes the 1-norm over Rd.

3. Global and local behavior

Using the representation of the process Z as a random
wevelet series, we obtain almost surely, global and local
modulus of continuity as well as a log-iterated law of its
paths.

Theorem 3.1 LetH(·) be the continuous functional parame-
ter of the chaotic multifractional process {Z(t) : t ∈ R}. Let
K ⊂ R be an arbitrary non degenerate compact interval.
One sets

H(K) := min{H(t) : t ∈ K}

Assuming that

H(·) ∈ CγK(K) for some γK ∈ [H(K), 1), (3.1)

where CγK(K) denotes the global space of Hölder on K of
order γK. Then, for all ω ∈ Ω∗, one has:

sup
(t1,t2)∈K2


|Z(t1, ω)− Z(t2, ω)|∣∣t1 − t2∣∣H(K)

(
1 +

∣∣ log |t1 − t2|
∣∣)d2
 < +∞ .

(3.2)

Theorem 3.2 Let t0 ∈ R be an arbitrary fixed point. As-
sume that there exists a constant γt0 ∈ [H(t0), 1) such that
the continuous function H(·) satisfies

sup
t∈R

{
|H(t)−H(t0)|
|t− t0|γt0

}
< +∞. (3.3)

Then, one has, almost surely:

sup
t∈[t0−1,t0+1]


|Z(t)− Z(t0)|

|t− t0|H(t0)

(
log
(
e +

∣∣ log |t− t0|
∣∣))d

2

 < +∞.

(3.4)

The following theorem shows that the chaotic multifrac-
tional process {Z(t) : t ∈ R} has a local asymptotic
self-similarity property rather similar to the one satisfied
by the classical Gaussian multifractional Brownian motion
(see [3]).
Theorem 3.3 Let t0 ∈ R be an arbitrary fixed point such
that the condition (3.3) holds. Then, the stochastic process
{Z(t) : t ∈ R} is at t0, strongly locally asymptotically
self-similar of order H(t0) and the tangent process is{
X(s,H(t0)) : s ∈ R

}
. More precisely, let (νn)n∈N be an ar-

bitrary sequence of positive real numbers which converges
to 0. For each n ∈ N, let Tt0,νnZ =

{
(Tt0,νnZ)(s) : s ∈ R

}
be

the stochastic process with continuous paths, defined, for
all s ∈ R, as

(Tt0,νnZ)(s) =
Z(t0 + νns)− Z(t0)

ν
H(t0)
n

. (3.5)

Then, when n goes to +∞, the probability measure induced
on C(J ) by

{
(Tt0,νnZ)(s) : s ∈ R

}
converges to the one

induced on C(J ) by
{
X(s,H(t0)) : s ∈ R

}
, where C(J ) de-

notes the usual Banach space of the real-valued continuous
functions over an arbitrary non degenerate compact interval
J of the real line equipped with the uniform norm.

Remark 3.4 One can derive from Theorem 3.3 and zero-
one law that, for any fixed arbitrarily small positive real num-
ber η, one has, almost surely,

sup
t∈[t0−1,t0+1]

{
|Z(t)− Z(t0)|
|t− t0|H(t0)+η

}
= +∞ ,

which means that the exponent H(t0) in (3.4) is optimal.
Moreover, when γK in (3.1) belongs to

[
H(K), 1

)
, then, us-

ing similar arguments, it can be shown that the exponent
H(K) in (3.2) is optimal: one has, almost surely,

sup
(t1,t2)∈K2

{
|Z(t1)− Z(t2)|
|t1 − t2|H(K)+η

}
= +∞ .

Theorem 3.5 Assume that the continuous function H(·) is
with values in a compact interval included in (0, 1) (this
means that inft∈RH(t) > 0 and supt∈RH(t) < 1). Then,
for each fixed ω ∈ Ω∗ and δ > 0, one has:

sup
|t|≥δ


|Z(t, ω)|

|t|H(t)

(
log
(
e +

∣∣ log |t|
∣∣))d

2

 < +∞. (3.6)
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