

Motivation

Let K be the attractor of a system $\mathcal{S} = \{S_1, ..., S_m\}$ of contraction similarities of \mathbb{R}^n . Suppose $S_i(K) \cap$ $S_i(K) \neq \emptyset$ for some i, j. Under what conditions it is possible to change the system \mathcal{S} slightly to such system $\mathcal{S}' = \{S'_1, \dots, S'_m\}$, that its attractor K' satisfies the condition $S'_i(K) \cap S'_j(K) = \emptyset$?

Our approach

General Position Theorem

Let (D, ρ) , (L_1, σ_1) , (L_2, σ_2) be metric spaces. Let $\varphi_1 : D \times L_1 \to \mathbb{R}^n, \, \varphi_2 : D \times L_2 \to \mathbb{R}^n$ be continuous maps such that: (a) there exist C > 0 and $\alpha > 0$ such that for any $\xi \in D, x_1 \in L_1, x_2 \in L_2$ and for i = 1, 2: $\|\varphi_i(\xi, x_1) - \varphi_i(\xi, x_2)\| \le C[\sigma_i(x_1, x_2)]^{\alpha};$ (b) there exists M > 0 such that for any $(x_1, x_2) \in L_1 \times L_2, \xi, \xi' \in D$ the function $\Phi(\xi, x_1, x_2) := \varphi_1(\xi, x_1) - \varphi_2(\xi, x_2)$ satisfies $\|\Phi(\xi', x_1, x_2) - \Phi(\xi, x_1, x_2)\| \ge M[\rho(\xi', \xi)].$ Then the set $\Delta := \{ \xi \in D : \varphi_1(\xi, L_1) \cap \varphi_2(\xi, L_2) \neq \emptyset \}$ is closed in D and $\dim_H \Delta \leq (1/\alpha) \dim_H (L_1 \times L_2).$

Outline of the proof:

Consider implicit function $g: L_1 \times L_2 \to D$, such that $\Phi(g(x_1, x_2), x_1, x_2) = 0.$ (b) $\Rightarrow g$ exists; $(a)\&(b) \Rightarrow g \text{ is } \alpha\text{-Hölder continuous.}$

In compare to method, which uses transversality condition with potential-theoretic characterization of Hausdorff dimension [4], our method allows us to construct self-similar sets with prescribed behavior of critical set in general position, using transversality-like condition (b).

General Position Theorem and its applications

Kirill Kamalutdinov^{*}, Andrey Tetenov^{**}

Example 1. Twofold Cantor sets

$K_2;qx$	$K_4; qx$
$K_1; px$	$K_3; px$
D_{1}	f + 1, $f = T$

Relative position of the pieces of K.

 $S_{pq} = \{S_1, S_2, S_3, S_4\}$ in \mathbb{R} ; $S_1(x) = px, S_2(x) = qx, S_3(x) = px + 1 - p,$ S_n $S_4(x) = qx + 1 - q;$ $p, q \in (0, 1/16).$ $K = K_{pq}$ is attractor of \mathcal{S}_{pq} , $K_i = S_i(K_{pqr})$.

If the system \mathcal{S}_{pq} satisfies the following exact overlap condition:

$$S_1^m(K) \cap S_2^n(K) = S_1^m S_2^n(K),$$

for all $m, n \in \mathbb{N}$, we call K_{pq} a twofold Cantor set.

Theorem 1

(1) Let $p \in (0, 1/16)$. Then K_{pq} is a twofold Cantor set for Lebesgue-almost all $q \in (0, 1/16)$. (2) If K_{pq} is a twofold Cantor set, then \mathcal{S}_{pq} does not have WSP. (3) If K_{pq} is a twofold Cantor set, then d =

 $\dim_H K_{pq}$ satisfies the equation $p^d + q^d - (pq)^d =$ 1/2.

Outline of the proof:

(1) Since $K = \{0\} \cup \bigcup_{m=0}^{\infty} S_1^m S_2^n(A)$, where A = $S_3(K) \cup S_4(K)$, and this union is disjoint for twofold Cantor set - it is enough to prove that $S_1^m(A) \cap$ $S_2^n(A) = \emptyset$ for all m, n. Fix $p \in (0, 1/16)$ and consider $\varphi_1 = S_1^m S_i \pi, \ \varphi_2 = S_2^n S_j \pi$, where $i, j \in$ $\{3,4\}, I = \{1,2,3,4\}$ and $\pi : I^{\infty} \to K$ is a natural projection. Supply I^{∞} with a metric such that φ_1, φ_2 are Lipschitz and apply General Position Theorem. Finally take a union over all m, n.

(2) Consider $S_1^m(S_2^n)^{-1}$ and use that $\frac{\log p}{\log q} \notin \mathbb{Q}$.

(3) Use a systems $\{S_1, S_1\omega, S_2\omega, \ldots, S_2^n\omega\}$ with $\omega(x) = 1 - x$ to get a lower estimates tending to $\dim_H K_{pq}$ as $n \to \infty$, and an infinite version of such system to get an upper estimate.

K

*Novosibirsk State University, Laboratory of Topology and Dynamics **Novosibirsk State University & Gorno-Altaysk State University

Example 2. Even unique intersection point can break OSC $[\mathbf{2}]$

0-	K_1	K_2	$K_3; -qx$	K_5	K_6 1
	px•	rx	$K_4; rx^h$	-rx	rx

Relative position of the pieces of K.

$S_{pqr} = \{S_1, S_2,, S_6\}$ in \mathbb{R} ;
$f_1(x) = px, S_2(x) = a + rx, S_3(x) = h - qx,$
$f_4(x) = h - r + rx, S_5(x) = 1 - a - rx,$
$f_6(x) = 1 - r + rx;$ $h = 8/15, a = 3/15,$
$, q, r \in (0, 1/36).$
$K = K_{pqr}$ is attractor of \mathcal{S}_{pqr} , $K_i = S_i(K_{pqr})$.

By the construction, the only possible non-empty intersection of the pieces is $K_3 \cap K_4$. In the case $K_3 \cap K_4 = \{h\}$, we say that the system \mathcal{S}_{pqr} has unique one-point intersection.

Theorem 2

(1) Fix $p, r \in (0, 1/36)$. Then for Lebesguealmost all $q \in (0, 1/36)$ the system \mathcal{S}_{pqr} has unique one-point intersection.

(2) If $\frac{\log p}{\log r} \notin \mathbb{Q}$, then the system \mathcal{S}_{pqr} does not have WSP for any q.

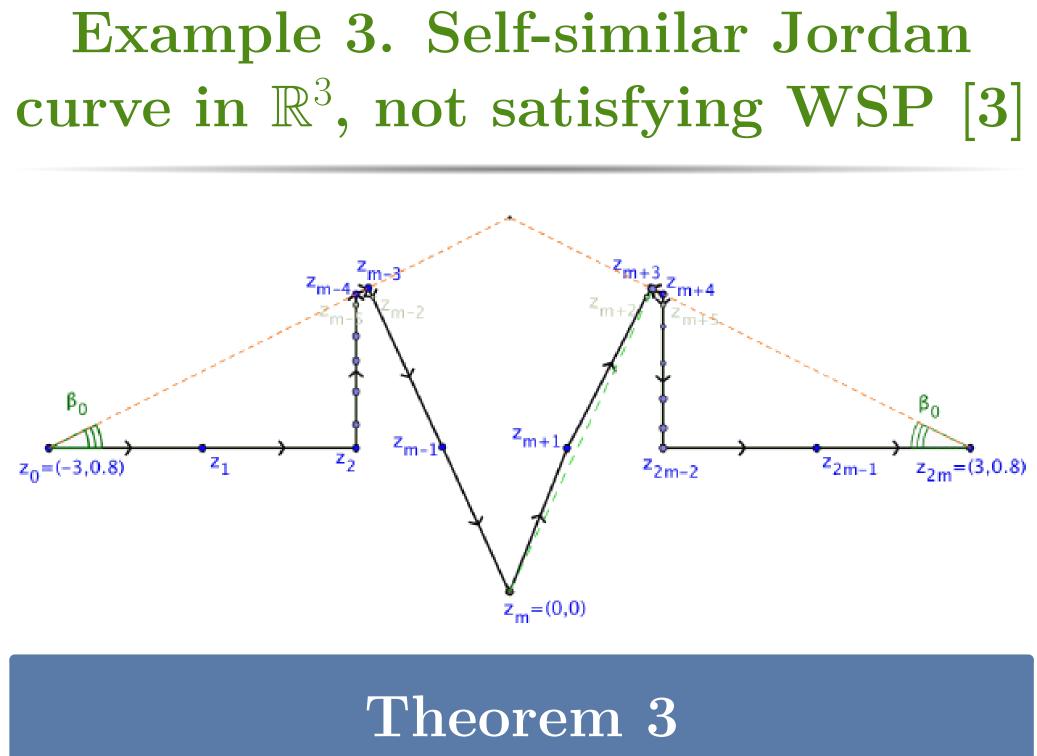
(3) S_{pqr} has unique one-point intersection, then dim K_{pqr} coincides with similarity dimension of the system \mathcal{S}_{pqr} .

Outline of the proof:

(1) Analogous to that of Example 1. Use that $K = \{0\} \cup \bigcup_{m=0}^{\infty} S_1^m(K \setminus K_1) = \{1\} \cup \bigcup_{m=0}^{\infty} S_4^m(K \setminus K_1)$ K_6), and apply General Position Theorem to $\varphi =$ $S_{3}S_{1}^{m}S_{i}\pi, \psi = S_{4}S_{6}^{n}S_{j}\pi, \text{ where } i \in I \setminus \{1\}, j \in$ $I \setminus \{6\}, I = \{1, \ldots, 6\}$ and $\pi : I^{\infty} \to K$ is a natural projection.

(2) Consider $(S_4S_6^nS_2)^{-1}S_3S_1^mS_5$.

(3) Use a systems $\{S_1^k S_j : k \in \{0, 1, \dots, n\}, j \in \{0, 1, \dots, n\}$ $I \setminus \{1\}\}$ to get a lower estimates tending to $\dim_H K_{pq}$ as $n \to \infty$.



There is such system $\mathcal{S} = \{S_1, ..., S_m\}$ of contraction similarities in \mathbb{R}^3 , which: (1) does not satisfy WSP, (2) satisfies one-point intersection property, (3) whose attractor is a Jordan arc.

Questions answered

Does finite intersection property imply...

- OSC, or at least WSP? No and no.
- positive Hausdorff measure? No.
- WSP for connected self-similar sets in \mathbb{R}^3 ? No.

References

- . K. Kamalutdinov, A. Tetenov, Even unique intersection point can break OSC: an example, arXiv:1809.08595.
- 2. K. Kamalutdinov, A. Tetenov, *Twofold Cantor sets* $in \mathbb{R}$, Sib. Electr. Math. Rep., 15 (2018), pp. 801–814, DOI 10.17377/semi.2018.15.066.
- 3. A. Tetenov, K. Kamalutdinov, D. Vaulin, Selfsimilar Jordan arcs which do not satisfy OSC, arXiv:1512.00290.
- 4. K. Simon, B. Solomyak, M Urbański, Hausdorff dimension of limit sets for parabolic IFS with overlaps, Pacific J. Math. 201:2 (2001), pp. 441–478.

Contact Email

[•] kirdan15@mail.ru ** a.tetenov@gmail.com