Augmented trees for infinite IFSs

Christina Moor

University of Bremen

moor@uni-bremen.de

Research Group **Dynamical Systems & Geometry** Analysis Dynamical Fractal Geometry **Systems** Ergodic Number Theory Theory Hyperbolic Geometry

www.math.uni-bremen.de/stochdyr

Abstract

We generalize the notion of augmented tree [LW17] to infinite IFS of similarity mappings on \mathbb{R}^d . This graph Γ is δ -hyperbolic in the sense of Gromov and allows us to define the hyperbolic boundary. The space $\partial^{g}\Gamma$ of equivalence classes of geodesic rays is a subset of the hyperbolic boundary. The usual coding map adapted to the notion of augmented tree defines a Hölder equivalence of between $\partial^{g}\Gamma$ and the limit set of the IFS.

Notation

Let $X \subset \mathbb{R}^d$ be a compact set and wlog |X| = 1. For an infinite index set $I \subset \mathbb{N}$, consider an IFS Φ of contractive similarity mappings $\varphi_i : X \to X$, $i \in I$. Denote by R_i the contraction ratio of φ_i , $i \in I$, and assume wlog $\lim_{i \in I} R_i = 0$ and wlog $R_i \leq R_j$ for $i \leq j$. • I^n : words of *n* letters from alphabet $I, n \in \mathbb{N}$; $I^0 \coloneqq \{()\}$, where () is the empty word • $I^* \coloneqq \bigcup \{ I^n | n \in \mathbb{N}_0 \}$ • $I^{\mathbb{N}}$: sequences of letters from alphabet *I*; for $\xi \in I^{\mathbb{N}}, \xi | n$: the prefix of ξ of *n* letters, $n \in \mathbb{N}$ For $\omega = (\omega_1, \ldots, \omega_n) \in I^n$, $n \in \mathbb{N}_0$, let • if n = 0: $\varphi_{()} \coloneqq \mathrm{Id}_{\mathbb{R}^d}$, else: $\varphi_{\omega} \coloneqq \varphi_{\omega_1} \circ \cdots \circ \varphi_{\omega_n}$ with ratio R_{ω} • for $\tau = \tau_1 \dots \tau_m \in I^m$, $m \in \mathbb{N}_0$: $\omega \tau \coloneqq \omega_1 \dots \omega_n \tau_1 \dots \tau_m \in I^{n+m}$ • $\omega^{-} \coloneqq (\omega_1, \ldots, \omega_{n-1})$ The *limit set* of the IFS is $J = \bigcup_{\xi \in I^{\mathbb{N}}} \bigcap_{n=1}^{\infty} \varphi_{\xi|n}(X)$. It is not closed in general. Following the ideas in [LW17] we construct a graph, an *augmented tree*, associated to the IFS Φ .

The graph (Γ, d) with graph metric *d* is δ -*Gromov hyperbolic* if for some choice (and hence any choice with some other δ) of reference point there exists $\delta \ge 0$

 $|x \wedge y| \ge \min\{|x \wedge z|, |y \wedge z|\} - \delta, \quad x, y, z \in \Gamma.$

Consider a graph (Γ , d) and extend the graph metric d in canonical way to edges. Then

 (Γ, d) is δ -Gromov hyperbolic \Rightarrow (Γ, d) is 4δ -hyperbolic (Γ, d) is δ -hyperbolic space \Rightarrow (Γ, d) is 3δ -Gromov hyperbolic

Augmented tree (Γ^*, \mathcal{E})

Let $R = R_1$ and consider the subsets $F_k \subset I^*$ for $k \in \mathbb{N} \cup \{0\} \Rightarrow \mathbb{N}_0$ given by

 $F_0 \coloneqq \{()\}, \qquad F_k \coloneqq \{\omega \in I^* \mid R_\omega \le R^k < R_{\omega^-}\}, \qquad k \in \mathbb{N}. \quad \Rightarrow \quad \bigcup \{F_k \mid k \in \mathbb{N}_o\} = I^*$

Note that contrary to the construction in [LW17], the sets F_k , $k \in \mathbb{N}_0$, are not disjoint. For each $k \in \mathbb{N}_0$, we interpret the sets F_k as level sets of vertices Γ_k via function

 $w: \Gamma_k \to F_k, \quad w(x) = \omega \quad \text{if } x \text{ is corresponds to the word } \omega$

and extend it to $w : \Gamma^* \coloneqq \bigcup \Gamma_k \to I^*$, on vertex set Γ^* .

The graph (Γ^*, \mathcal{E}) is δ -hyperbolic

We now return to the graph $\Gamma = (\Gamma^*, \mathcal{E})$ from above.

Proposition

Let (Γ, d) be the augmented tree for fixed $\kappa > 0$ with the usual graph metric *d*. • Γ is δ -hyperbolic \Leftrightarrow every horizontal geodesic is bounded in length. • Hence, (Γ, d) is δ -hyperbolic space for some $\delta \ge 0$.

Hyperbolic ultrametric ρ_a & hyperbolic boundary of Γ

For $\delta \ge 0$ such that Γ is δ -hyperbolic, let a > 0 such that $\exp(3\delta a) < \sqrt{2}$. • Define ultrametric ρ_a wrt reference point $\vartheta = ()$ of $x, y \in \Gamma^*$:

$\rho_a(x,y) \coloneqq \begin{cases} \exp(-a|x \wedge y|), & x, y \in \Gamma^*, x \neq y \\ 0, & x = y. \end{cases}$

• There exists a metric θ_a equivalent to ρ_a . • Consider the completion $\widehat{\Gamma}$ of (Γ, θ_a) . The *hyperbolic boundary* is $\partial \Gamma \coloneqq \widehat{\Gamma} \setminus \Gamma$.

Proposition

- Let $(x_n)_n$ be a sequence in Γ^* with $d(x_n, \vartheta) \to \infty$.
- $(x_n)_n$: Cauchy sequence wrt $\theta_a \Leftrightarrow (x_n)_n$: Cauchy sequence wrt $\rho_a \Leftrightarrow \lim_{m,n\to\infty} |x_n \wedge x_m| = \infty$
- Cauchy sequences $(x_n)_n$ and $(y_n)_n$ in (Γ^*, θ_a) define the same boundary point $\Leftrightarrow \lim_{n \to \infty} |x_n \wedge y_n| = \infty.$

Geodesic rays

- Geodesic rays $\pi = [x_1, x_2, ...], \pi' = [y_1, y_2, ...]$ in Γ are *equivalent* iff they stay at finite distance from each other, i.e. $\liminf_{n\to\infty} d(y_n, \pi) < \infty$. This relation is an equivalence relation on geodesic rays.
- If a geodesic ray $\pi = [x_1, x_2, ...]$ starts in a vertex $x_1 \neq \vartheta$ there exists a geodesic path $[\vartheta = z_1, ..., z_l]$ with $l \in \mathbb{N}$, and $k \in \mathbb{N}_0$, such that $\tilde{\pi} \coloneqq [\vartheta, z_2, \dots, z_l, x_k, \dots]$ is a geodesic ray starting in ϑ .
- A geodesic ray $\tilde{\pi}$ constructed as above is equivalent to π .

Figure 1: Example of vertical structure of the graph Γ . For the vertices x, y and z we have w(x) = w(y) = w(z).

Figure 2: Example of finite subgraph of Γ with vertical and horizontal edges. The path from x to y is a horizontal geodesic.

Definition of augmented tree Γ The vertex set is Γ^* . Let ϑ with $w(\vartheta) = ()$, be the root. Fix $\kappa > 0$. • vertical (unorientated) edges \mathcal{E}_v

 $(x,y) \in \mathcal{E}_v \quad \Leftrightarrow \quad x \in \Gamma_k \land y \in \Gamma_{k+1} \text{ for some } k \in \mathbb{N}_0 \land w(y) = w(x)\zeta \text{ for some } \zeta \in I^*$

• horizontal (unoriented) edges \mathcal{E}_h :

 $(x,y) \in \mathcal{E}_h \quad \Leftrightarrow \quad x,y \in \Gamma^k \text{ for some } k \in \mathbb{N}, x \neq y \land \operatorname{dist} \left(\varphi_{\mathsf{w}(x)}(X), \varphi_{\mathsf{w}(y)}(X) \right) \leq \kappa R^k.$

• augmented tree: $\Gamma = (\Gamma^*, \mathcal{E})$ with set of edges: $\mathcal{E} \coloneqq \mathcal{E}_v \cup \mathcal{E}_h$

• (integer valued) graph metric on Γ^* : d path $[x_1, x_2, ..., x_l] \subset (\Gamma^*, \mathcal{E})$ of length *l* is a geodesic $\Leftrightarrow d(x_1, x_l) = l$ infinite path $[x_1, x_2, ...]$ is geodesic ray $\Leftrightarrow d(x_k, x_l) = |l - k|$ for all $k, l \in \mathbb{N}$ $\Pi \coloneqq$ set of all geodesic rays starting at ϑ • for $k, l \in \mathbb{N}_0$ and $y \in \Gamma_{k+l}$: $y^{-l} = x$ if $x \in \Gamma_k$ and \exists path $\subset \mathcal{E}_v$ connecting x and y

Properties of augmented tree Γ

The graph $(\Gamma^*, \mathcal{E}_v)$ is a tree with root ϑ and with vertices of infinite degree. In particular, we have $I \equiv \Gamma_1$ and $\deg \vartheta = \infty$. • $\forall k \in \mathbb{N} \forall x \in \Gamma_k \forall 0 \le l \le k : \varphi_{\mathsf{w}(x)}(X) \subset \varphi_{\mathsf{w}(x^{-l})}(X)$ • If $x, y \in \Gamma_k$ for some k > 0 and $(x, y) \in \mathcal{E}$ then either $x^{-1} = y^{-1}$ or $(x^{-1}, y^{-1}) \in \mathcal{E}_h$. • $\forall \xi \in I^{\mathbb{N}} \, \forall k \in \mathbb{N} : \exists n(k) \in \mathbb{N} \, \exists x \in \Gamma_k : \xi | n(k) = \mathsf{w}(x)$ • $\forall \xi \in I^{\mathbb{N}} : \bigcap_{n=1}^{\infty} \varphi_{\xi|n}(X) = \bigcap_{k=1}^{\infty} \varphi_{\mathsf{w}(x_k)}(X)$ where x_k such that $\mathsf{w}(x_k) = \xi|n(k), n(k)$ as above

Proposition

There exists $\gamma < \infty$ such that every horizontal geodesic in (Γ, d) is bounded in length by γ . Hence, if $\pi = [\vartheta, x_2, x_3, ...]$ is geodesic ray then $\pi \in (\Gamma^*, \mathcal{E}_v)$. Furthermore, for $\xi \in I^{\mathbb{N}}$ and $(x_k)_k \in \Gamma^1 \times \Gamma^2 \times ...$ with $w(x_k) = \xi | n(k)$, the path $[\vartheta, x_1, x_2, ...]$ is a geodesic ray.

• If $\pi = [x_1 = \vartheta, x_2, ...]$ is a geodesic ray then $(x_n)_n$ is a Cauchy sequence.

Geodesic boundary $\partial^{\mathbf{g}}\Gamma$

Let us define the *geodesic boundary* $\partial^{\mathbf{g}}\Gamma$ as the quotient Π/\sim .

- In general, $\partial^{g} \Gamma \subseteq \partial \Gamma$.
- The Gromov product and the ultrametric ρ_a can be extended to ∂^g via
- $|[\pi] \wedge [\pi']| \coloneqq \inf \{\liminf_{n \to \infty} d(y_n, \pi) \mid \pi \in [\pi], \pi' = [\vartheta, y_1, y_2, \dots] \in [\pi'] \}.$ • Define *coding map* $c : \partial^{g} \Gamma \to J$ by

 $c([\pi]) \coloneqq \bigcap_{k=1}^{\infty} \varphi_{w(x_k)}(X), \text{ where } [\vartheta, x_1, x_2, \dots] \in [\pi].$

Theorem

The coding map c is a well-defined bijection $\partial^{g}\Gamma \rightarrow J$. The geodesic boundary $\partial^{g}\Gamma$ is Hölder equivalent to limit set $J: \exists C > 0$ such that, with $\alpha \coloneqq -1/a \ln R$,

 $C^{-1}|c([\pi]) - c([\pi'])| \le \rho_a([\pi], [\pi'])^{\alpha} \le C |c([\pi]) - c([\pi'])|, \quad [\pi], [\pi'] \in \partial^{g}\Gamma.$

Work in progress

For infinite index set $I \subset \mathbb{N}$, let φ_i be a conformal IFS (cIFS) Ψ on compact set $X \in \mathbb{R}^d$. That is, each φ_i is a C^1 conformal injective contraction and there exists open bounded connected set $V \supset X$ such that φ_i can be extended to C^1 -conformal injective contraction on V, $i \in I$ (cf. [MU96]). For $\omega \in I^*$ denote $R_\omega \coloneqq \sup_{v \in V} \|D\varphi_\omega(x)\|_{op}$. Let Ψ have the bounded distortion property and satisfy $\lim_{i \in I} R_i = 0$. We can adapt the construction of an augmented tree for conformal case in an obvious way. Denote the limit set of Ψ by J.

Proposition

For fixed $\kappa > 0$, let $\Gamma = (\Gamma^*, \mathcal{E})$ be augmented tree for cIFS Ψ . Then the previous results are valid for Γ and limit set J.

• Γ is δ -hyperbolic graph and every horizontal geodesic is bounded in length by a constant γ .

• The geodesic boundary $\partial^{g}\Gamma$ is Hölder equivalent to the limit set *J*. (*Proof in progress.*)

δ -hyperbolicity

Following [Woe00], we recall the notions of δ -hyperbolic spaces and δ -Gromov hyperbolic graphs.

δ -hyperbolic space

Let (Γ, ρ) be a geodesic space. For $x, y \in \Gamma$ write $\pi[x, y]$ for a geodesic path from x to y, which in general is not unique. The space (X, d) is δ -hyperbolic for $\delta \ge 0$ if the following holds. For any $x, y, z \in \Gamma$ consider triangle composed by geodesic paths $\pi[x, y], \pi[y, z], \pi[z, x]$. Then any point on one of the three sides is at distance of at most δ from some point on one of the other sides.

Gromov product & δ -Gromov hyperbolic graphs

Let (Γ, d) be a graph with graph metric d and ϑ a vertex in Γ . For vertices x, y in Γ define *Gromov product of* x and ywrt reference point ϑ as

 $|x \wedge y| \coloneqq \frac{1}{2}(d(x, \vartheta) + d(y, \vartheta) - d(x, y)).$

Open questions

• For IFS/ cIFS/ GDMS, does the open set condition guarantee the identity $\partial \Gamma = \partial^{g} \Gamma$?

- How does the concept of an augmented tree, in particular its hyperbolic and geodesic boundaries, relate to the concepts of limit set and (uniform) radial limit set of Kleinian groups?
- How do these concepts relate regarding the phenomenon of "dimension drop"?

References

- [LW17] Ka-Sing Lau and Xiang-Yang Wang. On hyperbolic graphs induced by iterated function systems. *Adv. Math.* **313**, 2017.
- [MU96] R. Daniel Mauldin and Mariusz Urbański. Dimensions and Measures in Infinite Iterated Function Systems. Proc. London Math. Soc. (3) s3-73, 1996.
- [Woe00] Wolfgang Woess. Random Walks on Infinite Graphs and Groups. Cambridge University Press, 2000.