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Abstract
In [5], Lau and Ngai, motivated by the work of Denker and Sato [1, 2], gave an example of an isotropic Markov chain
on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpiński
gasket. Here, we show how these results can be extended to a class of non-isotropic Markov chains. This work is
based on the recent article [3].

Setting and construction of the Markov chain

Let ϑ denote the empty word, Σ0 := {ϑ} and Σ := {1, 2, 3}. Set Σ∗ :=
⋃
n∈N0

Σn, the set
of all finite words over the alphabet Σ. Further, for n ∈ N, let V n := {1n, 2n, 3n} and
set Σ̃n := Σn \ V n.

Let p ∈ (0, 1/2) and set q := 1− 2 p. Define the transition matrix P : Σ∗ × Σ∗ → [0, 1]
by

P (u, v) :=



p if u = ωijn−k ∈ Σ̃n with i, j ∈ Σ distinct and ω ∈ Σk−1

and v ∈ Σn with v = ωjin−k or v = ωijn−k−1i,

q if u = ωijn−k ∈ Σ̃n with i, j ∈ Σ distinct and ω ∈ Σk−1

and v = ωijn−k−1l for l ∈ Σ \ {i, j},
1/3 if u ∈ V n and v = ui for i ∈ Σ,

0 otherwise.

Denote by (Xn)n∈N0
the Markov chain with origin ϑ, state space Σ∗ and transition

matrix P . Notice, if p = 1/3, then the above Markov chain coincides with the one in
studied [5].
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As the figure on the left illustrates, if the
chain
• starts at a word in Σ̃n, then it walks to

one of its three neighbours with prob-
ability p or q;
•hits an element u ∈ V n, then it moves

to one of its descendants on the next
level with probability 1/3.

Hitting probabilities

Denote the probability, conditioned on starting at a state x ∈ Σ∗, to eventually arrive
at a state y ∈ Σ∗ by

ρ(x, y) := P( ∃ k ∈ N0 : Xk = y |X0 = x).

We are concerned with computing the probability to be absorbed by in, for i ∈ Σ,
when starting at some x ∈ Σn. To this end, we define ρ : Σ∗→ [0, 1]3 by

ρ(x) := [ρ(x, 1n), ρ(x, 2n), ρ(x, 3n)].

For n ≥ 2 set

αn := ρ(12n−1, 1n),
βn := ρ(12n−1, 2n),
γn := ρ(12n−1, 3n),

and
an := ρ(1n−12, 1n),
bn := ρ(1n−12, 2n),
cn := ρ(1n−12, 3n).

Further, define

A(1)
n :=

 1 0 0
αn βn γn
αn γn βn

 , A(2)
n :=

βn αn γn0 1 0
γn αn βn

 and A(3)
n :=

βn γn αnγn βn αn
0 0 1

.
The figure below shows the above hitting probabilities for n = 2 and n = 3.
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The matrix A(i)
n contains the probabilities that the process, starting in one of the three

vertices i1n−1, i2n−1 or i3n−1, reaches V n.

Denote the standard i-th row unit vector of R3 by ei and let x = i1 . . . in ∈ Σn.
With the above at hand, we can express the hitting probability vector ρ(x) as a
matrix product, namely,

ρ(x) = einA
(in−1)
2 · · ·A(i1)

n . (∗)

Theorem 1: Limits of the hitting probabilities, [3]

lim
n→∞

(αn, βn, γn) = (2/5, 2/5, 1/5) and lim
n→∞

(an, bn, cn) = (1, 0, 0).

The limits of these sequences are independent of the chosen parameter p ∈ (0, 1/2)
and are equal to the ones obtained in the isotropic case, namely when p = 1/3, see [5].

With these limits we can:

•prove that the random matrix product in (∗) converges;

•use a representation of the Martin kernel in terms of these hitting probabilities to
extend the kernel to the set of infinite words over the alphabet Σ;

•prove that the Martin metric can also be extended to the set of infinite words over
the alphabet Σ;

•find an analogue of the (1/5)-(2/5)-rule for the P -harmonic functions.

Main results

Theorem 2: Sierpiński gasket as Martin boundary, [3]

The Martin boundary of (Xn)n∈N0
is homeomorphic to the Sierpiński gasket K.

Theorem 3: Minimal Martin boundary, [3]

The minimal Martin boundary of (Xn)n∈N0
is homeomorphic to the post critical set

of K.

Theorem 4: Space of P -harmonic functions, [3]

The P -harmonic functions on the Martin boundary coincide with the canonical
harmonic functions of [4, 6]. Indeed, the space of P -harmonic functions on the
Sierpińki gasket K is three-dimensional.

Future work

It would be of interest to investigate:

•what happens if we rotate the directions of the transition probabilities p and q;

•does the Martin boundary and P -harmonic functions change if the Markov chain
is set up to prefer a clockwise or anti-clockwise direction in the subgraphs on each
level;

•what happens if we choose different probabilities for each direction;

• can one modify the Markov chain such that the minimal Martin boundary is
homeomorphic to a given Borel subset of K?

Simulations indicate that for the first three points the same results as in Theorem 1
may hold.
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