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Abstract
Consider a random Cantor set that is generated by a binary tree-indexed family of random contractions. With-

out imposing the independence of the contractions we determine an almost sure upper bound of its Hausdorff
dimension in terms of the random pressure function.

Introduction and Main Objective

Our purpose is to estimate an almost sure upper bound of the Hausdorff dimen-
sion of a random Cantor Set based on a tree indexed family and generated by some
recursive contractions. Such a random fractal has been studied by K.Falconer [1, 2],
S.Graf [5], R.D. Mauldin and S.C. Williams[4] and many others. The significant
difference is that in their works the random fractals are generated by independent
random contractions, while in our work we do not make any assumption on the
linearity and the independence between the random contractions.

Construction and Notations

First an overview of the construction of this random Cantor Set. Formally the bi-
nary tree is the set:

T = {∅} ∪
∞⋃
n=1

{1, 2}n

formed by the empty set and the words u = u1u2...un in the alphabet {1, 2},∀n ≤ 1
.We denote by Tn = {1, 2}n the set of the words of length n. For u ∈ T and i ∈ {1, 2}
we denote by ui the concatenation of u and i.

We consider the interval I = [0, 1], and for any vertex u, we consider the closed and
random interval Iu, which is a subset of [0, 1], and satisfies the following proprieties,
• If v is a child of u, then Iv ⊂ Iu.
• The two intervals Iu1 and Iu2 are disjoint.
• Finally, for every u ∈ T , the random contraction ratios satisfy

0 < a ≤ Cui =
|Iui|
|Iu|
≤ b <

1

2
, i = 1, 2, for some a, b ∈ (0, 1/2).

Define the random Cantor Set F by

F =
⋂
n∈N

⋃
u∈Tn

Iu.

Figure 1: Random Cator Set

Let (Ω,F , P ) be the probability space where the random variable Cu for u ∈ Tn is
defined. We impose the statistical self-similarity by requiring that for every u ∈ T ,
the vectors (Cu1, Cu2) have the same distribution as the vector (C1, C2). Let q ∈ R,
we define the pressure function

P (q) = lim sup
n→∞

1

n
logE

(∑
u∈Tn

|Iu|q
)

Lemma 1: P is a convex, continuous and strictly decreasing function and thus
there exists unique s0, so that P (s0) = 0.

Main Result

Let s0 be given as in lemma 1, then with probability 1, we have

dimH F ≤ s0.

Main idea of the proof : Prove that a.s.

P̄ (q) = lim sup
n→∞

1

n
log
∑
u∈Tn

|Iu|q ≤ P (q), ∀q ∈ R.

Examples for Equality and Strict Inequality

• Equality dimH F1 = s0 a.s.
Example 1: Falconer [1, 2]
Falconer studied the same set but he required in addition that, for all u ∈ T , the
vectors of contractions (Cu1, Cu2) are independent (we call this Fractal F1) and he
gets the following result:
Theorem With probability 1, the random Cantor Set F1 has Hausdorff dimension
dimH F1 = s, where s is the solution of the expectation equation

E(Cs
1 + Cs

2) = 1.

In other words s satisfies P (s) = 0.
In this case, we get using the conditional expectation that our pressure function
is exactly P : q ∈ R 7−→ logE(Cq

1 + Cq
2).

We notice that our result is consistent with Falconer’s result.

• Strict Inequality dimH F2 < s0 a.s.
Example 2: Hambly [6]
In this Example we impose in the construction of the random Cantor Set F2 that
|Iu| = |Iv|when the words u and v have the same length,
and thus the Cu’s are the same for all u ∈ Tn. In order to simplify the notation,
we denote by Cn := Cu for any u ∈ Tn. Furthermore, we require that the random
variables {Cn, n ∈ N} are ergodic and stationary (in particular independent) and
we assume that E(logC1) <∞. In this case Hambly has the following result:
Theorem With probability 1, the random set F2 has Hausdorff dimension dimH F2 = s,
where s is given by,

s = − log 2

E(logC1)
.

In other words s satisfies P̃ (s) = 0, where P̃ : q ∈ R 7−→ lim sup
n→∞

n−1E
(

log
∑
u∈Tn

|Iu|q
)
.

In this example P̃ is exactly P̃ (q) = log 2 + qE(logC1). Since, ∀q ∈ R

P̃ (q) = lim sup
n→∞

1

n
E
(

log
∑
u∈Tn

|Iu|q
)
≤ P (q) = lim sup

n→∞

1

n
logE

(∑
u∈Tn

|Iu|q
)

then, we can notice that the upper bound of the Hausdorff dimension of the ran-
dom Cantor Set in this case is strictly less than s0.

Remark: Analog results hold for random Multifactals.

Open Questions

• Are there further examples of random Cantor Sets which have a Hausdorff Di-
mension between the results of Example 1 and Example 2?

• Could we find an almost sure lower bound of the Hausdorff dimension of the
random Cantor Set (when we do not make any assumption on the linearity and
the independence between the random contractions)?

• What would the Hausdorff dimension of the Fractal in the second example be
if we assume that the contractions are not linear? Could the t which satisfies
P̃ (t) = 0 be the desired result?
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